Extensions 1→N→G→Q→1 with N=C4 and Q=C22×Dic7

Direct product G=N×Q with N=C4 and Q=C22×Dic7
dρLabelID
C22×C4×Dic7448C2^2xC4xDic7448,1235

Semidirect products G=N:Q with N=C4 and Q=C22×Dic7
extensionφ:Q→Aut NdρLabelID
C41(C22×Dic7) = C2×D4×Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4:1(C2^2xDic7)448,1248
C42(C22×Dic7) = C22×C4⋊Dic7φ: C22×Dic7/C22×C14C2 ⊆ Aut C4448C4:2(C2^2xDic7)448,1238

Non-split extensions G=N.Q with N=C4 and Q=C22×Dic7
extensionφ:Q→Aut NdρLabelID
C4.1(C22×Dic7) = D8×Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.1(C2^2xDic7)448,683
C4.2(C22×Dic7) = D8⋊Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.2(C2^2xDic7)448,686
C4.3(C22×Dic7) = SD16×Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.3(C2^2xDic7)448,695
C4.4(C22×Dic7) = SD16⋊Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.4(C2^2xDic7)448,698
C4.5(C22×Dic7) = Q16×Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4448C4.5(C2^2xDic7)448,717
C4.6(C22×Dic7) = Q16⋊Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4448C4.6(C2^2xDic7)448,718
C4.7(C22×Dic7) = D85Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C41124C4.7(C2^2xDic7)448,730
C4.8(C22×Dic7) = D84Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C41124C4.8(C2^2xDic7)448,731
C4.9(C22×Dic7) = C2×D4⋊Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.9(C2^2xDic7)448,748
C4.10(C22×Dic7) = (D4×C14)⋊6C4φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4112C4.10(C2^2xDic7)448,749
C4.11(C22×Dic7) = C2×Q8⋊Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4448C4.11(C2^2xDic7)448,758
C4.12(C22×Dic7) = (Q8×C14)⋊6C4φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.12(C2^2xDic7)448,759
C4.13(C22×Dic7) = C4○D4⋊Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.13(C2^2xDic7)448,766
C4.14(C22×Dic7) = C28.(C2×D4)φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.14(C2^2xDic7)448,767
C4.15(C22×Dic7) = C2×D42Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4112C4.15(C2^2xDic7)448,769
C4.16(C22×Dic7) = (D4×C14)⋊9C4φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C41124C4.16(C2^2xDic7)448,770
C4.17(C22×Dic7) = C24.38D14φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4112C4.17(C2^2xDic7)448,1251
C4.18(C22×Dic7) = C2×Q8×Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4448C4.18(C2^2xDic7)448,1264
C4.19(C22×Dic7) = C14.422- 1+4φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.19(C2^2xDic7)448,1265
C4.20(C22×Dic7) = C28.76C24φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C41124C4.20(C2^2xDic7)448,1272
C4.21(C22×Dic7) = C4○D4×Dic7φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.21(C2^2xDic7)448,1279
C4.22(C22×Dic7) = C14.1062- 1+4φ: C22×Dic7/C2×Dic7C2 ⊆ Aut C4224C4.22(C2^2xDic7)448,1280
C4.23(C22×Dic7) = C2×C8⋊Dic7φ: C22×Dic7/C22×C14C2 ⊆ Aut C4448C4.23(C2^2xDic7)448,638
C4.24(C22×Dic7) = C2×C561C4φ: C22×Dic7/C22×C14C2 ⊆ Aut C4448C4.24(C2^2xDic7)448,639
C4.25(C22×Dic7) = C23.22D28φ: C22×Dic7/C22×C14C2 ⊆ Aut C4224C4.25(C2^2xDic7)448,640
C4.26(C22×Dic7) = C2×C56.C4φ: C22×Dic7/C22×C14C2 ⊆ Aut C4224C4.26(C2^2xDic7)448,641
C4.27(C22×Dic7) = C23.47D28φ: C22×Dic7/C22×C14C2 ⊆ Aut C4224C4.27(C2^2xDic7)448,655
C4.28(C22×Dic7) = M4(2).Dic7φ: C22×Dic7/C22×C14C2 ⊆ Aut C41124C4.28(C2^2xDic7)448,659
C4.29(C22×Dic7) = C22×C7⋊C16central extension (φ=1)448C4.29(C2^2xDic7)448,630
C4.30(C22×Dic7) = C2×C28.C8central extension (φ=1)224C4.30(C2^2xDic7)448,631
C4.31(C22×Dic7) = C2×C8×Dic7central extension (φ=1)448C4.31(C2^2xDic7)448,632
C4.32(C22×Dic7) = C2×C56⋊C4central extension (φ=1)448C4.32(C2^2xDic7)448,634
C4.33(C22×Dic7) = C28.12C42central extension (φ=1)224C4.33(C2^2xDic7)448,635
C4.34(C22×Dic7) = M4(2)×Dic7central extension (φ=1)224C4.34(C2^2xDic7)448,651
C4.35(C22×Dic7) = C28.7C42central extension (φ=1)224C4.35(C2^2xDic7)448,656
C4.36(C22×Dic7) = C56.70C23central extension (φ=1)2244C4.36(C2^2xDic7)448,674
C4.37(C22×Dic7) = C23×C7⋊C8central extension (φ=1)448C4.37(C2^2xDic7)448,1233
C4.38(C22×Dic7) = C22×C4.Dic7central extension (φ=1)224C4.38(C2^2xDic7)448,1234
C4.39(C22×Dic7) = C2×C23.21D14central extension (φ=1)224C4.39(C2^2xDic7)448,1239
C4.40(C22×Dic7) = C2×Q8.Dic7central extension (φ=1)224C4.40(C2^2xDic7)448,1271

׿
×
𝔽